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Abstract: B-trees have been ubiquitous for decades; and over the past 20 years, 
record-level locking has been ubiquitous in b-tree indexes. There are multiple de-
signs, each a different tradeoff between (i) high concurrency and a fine granularity 
of locking for updates, (ii) efficient coarse locks for equality and range queries, 
(iii) run time efficiency with the fewest possible invocations of the lock manager, 
and (iv) conceptual simplicity for efficient development, maintenance, and testing. 
A new design introduced here is efficient and simple yet supports both fine and 
coarse granularities of locking. A lock request may cover (i) a gap (open interval) 
between two (actual) key values, (ii) a key value with its entire list of (actual and 
possible) row identifiers (in a non-unique secondary index), (iii) a specific pair of 
key value and row identifier, or (iv) a distinct key value and a fraction of all (actu-
al and possible) row identifiers. Using specific examples such as insertions, dele-
tions, equality queries, and phantom protection, case studies compare four prior b-
tree locking techniques and the new one. Experiments show that the new technique 
reduces the number of lock requests yet increases transactional concurrency, im-
proving transaction throughput for both read-only and read-write transactions. The 
case studies and the experiments suggest that new b-tree implementations as well 
as existing ones ought to adopt the new locking techniques. 

1 Introduction 
Many data stores support indexes on multiple attributes of stored data items. In data-
bases, for example, these are known as secondary indexes or as non-clustered indexes. 
Most database management systems permit dozens of secondary indexes for each table 
even if fewer secondary indexes per table are more common. 
Key values in secondary indexes may or may not be unique. In other words, there may 
be many, even thousands, of rows with the same value in an indexed attribute. In those 
cases, compression is useful, e.g., bitmaps instead of lists of row identifiers. Such repre-
sentation choices, however, are entirely independent from transactional concurrency 
control, where further improvements are possible despite multiple available techniques 
[G 10] and decades with little progress. 

1.1 Concurrency control and lock scopes 
In transactional concurrency control, pessimistic techniques (locking) may focus on rows 
in a table across all indexes (e.g., ARIES/IM [ML 92]) or on key values in an individual 
index (e.g., ARIES/KVL [M 90]). When locking entries within a non-unique secondary 
index, the finest granularity of locking may be individual index entries (representing one 
row and its value in the indexed attribute) or distinct key values (such that a single lock 
covers all instances of the same value in the indexed attribute). 
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Locks on individual index entries are more desirable for insert, update, and delete opera-
tions, because they permit that two transactions modify at the same time different rows 
with the same value in an indexed column. The disadvantage of this approach is that 
queries may need to acquire a lock on each index entry, possibly thousands of entries for 
a single key value. Many individual lock acquisitions not only impose overhead but also 
incur the danger of a lock acquisition failure (e.g., deadlock) late in the process. If that 
occurs, the entire statement or transaction aborts and all earlier effort is wasted. 
Locks on distinct key values are more desirable for search and selection operations, be-
cause a query with an equality predicate needs to retrieve (and, for serializability, to 
lock) all items satisfying the predicate. The disadvantage of this approach is reduced 
concurrency in case multiple concurrent transactions need to modify separate index en-
tries. A single lock may cover thousands of index entries when only one is needed. 
The proposed design combines these benefits, i.e., high concurrency (by using a small 
granularity of locking) and low overhead (by using a large granularity of locking). It is a 
variant of multi-granularity locking (hierarchical locking) with some new aspects that 
lock multiple levels within the hierarchy by a single invocation of the lock manager yet 
cope with a large or even infinite domain of values in the lower level of the hierarchy. 

1.2 Design goals 
The obvious primary design goal is correctness, e.g., in two-phase locking. The second 
design goal is simplicity for easier understanding, development, maintenance, and quali-
ty assurance. Thus, the proposed design is simpler than all prior ones, e.g., rendering 
“instant duration” locks, “insertion” lock modes, and similar creative ideas obsolete. 
The third design goal is high concurrency and therefore a fine granularity of locking, 
wanted in particular for updates and even more particularly for updates guided by 
searches in other indexes. Accordingly, the proposed design enables locks on individual 
index entries within lists associated with distinct key values. 
The final design goal is run time efficiency and thus a coarse granularity of locking, 
wanted in particular for large operations such as range queries and equality queries in 
non-unique indexes, including the read-only search required to determine a set of rows to 
update or delete as well as index search in index nested loops joins. All transactions ben-
efit from a minimal number of lock manager invocations as well as the fewest and earli-
est lock acquisition failures in cases of contention. Accordingly, the proposed design 
enables locks on distinct key values and their entire lists of index entries. 

1.3 Preview 
The focus here is on the scope of locks in b-tree indexes and on the effect of lock scopes 
on the number of locks required and on the degree of concurrency enabled. The follow-
ing section reviews prior techniques for record-level locking in b-tree indexes, i.e., key-
value locking and key-range locking. Section 3 introduces a new design and Section 4 
compares the techniques using practical example scenarios. Section 5 reports on imple-
mentation and performance. Section 6 sums up the techniques and the results. 
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2 Prior designs 
For b-tree indexes in databases, we assume the current standard design that has data rec-
ords or index entries with user contents only in the leaf nodes, also known as B+-trees. 
Therefore, all designs for key-value locking and key-range locking apply to key values 
in the leaf nodes only. 
By default, locks are possible on all key values in the index, including those marked as 
ghost records, also known as invalid or pseudo-deleted records. Ghost records are usual-
ly marked by a bit in the record header. For non-unique secondary indexes with a list of 
bookmarks attached to each distinct key value, a ghost record is a distinct key value with 
an empty list or one in which all remaining entries are themselves ghosts. 
In this paper, the term “bookmark” means a physical record identifier (device, page, and 
slot number) if the table’s primary data structure is a heap and a unique search key in the 
primary index if the table’s primary data structure is a b-tree. Such primary b-tree index-
es are known as a primary key index in Tandem’s (now HP’s) NonStop SQL, as a clus-
tered index in Microsoft’s SQL Server, and as an index-organized table in Oracle. 
In most systems, an unsuccessful search in a serializable transaction locks a gap between 
neighboring existing key values, known as phantom protection. An alternative design 
inserts an additional key value (for precise phantom protection) either in the index or in 
some auxiliary data structure. For example, NonStop SQL includes such a key value 
within the lock manager (but not the data pages in the buffer pool). It seems that quality 
assurance and code stabilization for this design took substantial amounts of time. All 
methods discussed below lock the gap by locking an adjacent pre-existing key value. 

2.1 ARIES/KVL “key-value locking” 
ARIES/KVL [M 90] locks distinct key values, even in non-unique indexes. Each lock on 
a distinct key value in a secondary index covers all bookmarks associated with that key 
value as well as the gap (open interval) to the next lower distinct key value present in the 
index. A lock within a secondary index does not lock any data in the table’s primary data 
structure or in any other secondary index. 
Figure 1, copied verbatim from [M 90], enumerates the cases and conditions required for 
a correct implementation of ARIES/KVL. At the same time, it illustrates the complexity 
of the scheme. Note that IX locks are used for insertions into an existing list of book-
marks, which permits other insertions (also with IX locks) but neither queries nor dele-
tions. In other words, ARIES/KVL is asymmetric as it supports concurrent insertions 
into a list of bookmarks but not concurrent deletions. Note also the use of locks with 
instant duration, in violation of traditional two-phase locking. This exemplifies how, 
from the beginning of record-level locking in b-tree indexes, there has been some crea-
tive use of lock modes that ignores the traditional theory of concurrency control but ena-
bles higher concurrency without actually permitting wrong database contents or wrong 
query results. Nonetheless, it substantially expands the test matrix, i.e., cost, complexity, 
and duration of quality assurance. 
Figure 1 provides guidance for insertions and deletions but not for updates. A value 
change in an index key must run as deletion and insertion, but an update of a non-key 
field in an index record may occur in place. Non-key updates were perhaps not consid-
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ered at the time; in today’s systems, non-key updates may apply to columns appended to 
each index record using, for example, an “include” clause in order to “cover” more que-
ries with “index-only retrieval.” More importantly, toggling a record’s “ghost” flag is a 
non-key update, i.e., logical deletion and re-insertion of an index entry. Clearly, re-
insertion by toggling a previously deleted key value requires more than an IX lock; oth-
erwise, multiple transactions might attempt, at the same time and without noticing their 
conflict, turning a ghost into a valid record. 
 

 Next key value Current key value 
Fetch & fetch next  S for commit duration 
Insert Unique index IX for instant duration IX for commit duration if next key value 

not previously locked in S, X, or SIX mode 
X for commit duration if next key value 
previously locked in S, X, or SIX mode 

Non-unique 
index 

IX for instant duration if 
apparently insert key val-
ue doesn’t already exist 
 
No lock if insert key value 
already exists 

IX for commit duration if (1) next key not 
locked during this call OR (2) next key 
locked now but next key not previously 
locked in S, X, or SIX mode 
X for commit duration if next key locked 
now and it had already been locked in S, X, 
or SIX mode 

Delete Unique index X for commit duration X for instant duration 
Non-unique 
index 

X for commit duration if 
apparently delete key 
value will no longer exist 
No lock if value will defi-
nitely continue to exist 

X for instant duration if delete key value 
will not definitely exist after the delete 
X for commit duration if delete key value 
may or will still exist after the delete 

Figure 1. Summary of locking in ARIES/KVL. 

2.2 ARIES/IM “index management” 
ARIES/IM [ML 92] locks logical rows in a table, represented by records in the table’s 
primary data structure, a heap file. Thus, its alternative name is “data only locking.” A 
single lock covers a record in a heap file and a corresponding entry in each secondary 
index, plus (in each index) the gap (open interval) to the next lower key value. Com-
pared to ARIES/KVL, this design reduces the number of locks. For example, updating a 
row in a table requires only a single lock, independent of the number of indexes for the 
table (with some special cases if the update modifies an index key, i.e., the update re-
quires deletion and insertion of index entries with different key values). 
Figure 2, copied verbatim from [ML 92], compares in size and complexity rather favora-
bly with Figure 1, because of much fewer cases and conditions. The conditions for in-
dex-specific locking apply to the table’s primary data structure. In other words, insertion 
and deletion always require an instant-duration lock and a commit-duration lock on ei-
ther the current or the next record. 
These conditions apply to secondary indexes and their unique entries (made unique, if 
necessary, by including row identifiers) if ARIES/IM is applied to each individual index, 
i.e., if “data only locking” is abandoned. The inventors claim that “ARIES/IM can be 
easily modified to perform index-specific locking also for slightly more concurrency 
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compared to data-only locking, but with extra locking costs” [ML 92] but no such im-
plementation seems to exist. For the number of lock requests, it would combine the dis-
advantage of ARIES/KVL (separate locks for each index) with those of ARIES/IM (sep-
arate locks for each row in the table). 
 

 Next key Current key 
Fetch & 
fetch next 

 S for commit duration 

Insert X for instant 
duration 

X for commit duration if 
index-specific locking is used 

Delete X for commit 
duration 

X for instant duration if 
index-specific locking is used 

Figure 2. Summary of locking in ARIES/IM. 

2.3 SQL Server key-range locking 
Both ARIES/KVL and ARIES/IM reduce the number of lock manager invocations with 
locks covering multiple records in the database: a lock in ARIES/KVL covers an entire 
distinct key value and thus multiple index entries in a non-unique index; and a lock in 
ARIES/IM covers an entire logical row and thus multiple index entries in a table with 
multiple indexes. ARIES/IM with “index-specific locking” is mentioned in passing, 
where each lock covers a single index entry in a single index. The next design employs 
this granularity of locking and further introduces some distinction between a key value 
and the gap to its neighboring key value. 
SQL Server implements Lomet’s design for key-range locking [L 93]. Locks pertain to a 
single index, either a table’s clustered index (primary index, index-organized table) or 
one of its non-clustered indexes (secondary indexes). Each lock covers one distinct key 
value (made unique, if necessary, by including the bookmark) plus the gap to the next 
lower key value (phantom protection by next-key locking). There is no provision for 
locking a distinct key value and all its instances with a single lock request. Instead, page-
level locking may be specified instead of key-range locking for any clustered and non-
clustered index, with additional complexity when b-tree nodes split and merge. 
The set of lock modes follows [L 93]. S, U, and X locks are shared, update, and exclu-
sive locks covering a gap and a distinct value. RS-S, RS-U, RX-S, RX-U, and RX-X 
locks distinguish the lock mode for the gap between keys (the mode prefixed by “R” for 
“Range”) and for the key value itself. RI-N, RI-S, RI-U, and RI-X are “insertion” locks, 
all held for instant duration only and used for insertions into gaps between existing key 
values. The RI-_ lock modes are outside the traditional theory of concurrency control. 
The design lacks RS-N, RS-X, RX-N, and RU-_ modes. 
SQL Server uses ghost records for deletion but not for insertion. It supports indexes on 
materialized views but not ‘increment’ locks, e.g., in “group by” views with sums and 
counts. 

2.4 Orthogonal key-range locking 
Orthogonal key-range locking is somewhat similar to key-range locking in SQL Server, 
but with a complete set of lock modes and completely orthogonal locks on key value and 
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gap. Prior-key locking (rather than next-key locking) is recommended such that a lock 
on a key may include a lock on the gap to the next higher key value [G 07, G 10]. Lock 
modes (for key value or gap) may include shared, update, exclusive, and increment. 
Figure 3 illustrates combined lock modes covering key value and gap derived from tradi-
tional lock modes. Concatenation of a lock mode for key values and a lock mode for 
gaps defines the set of possible lock modes. Additional lock modes are easily possible, 
e.g., update or increment locks. 
Figure 4 shows the compatibility matrix for the lock modes of Figure 3. Two locks are 
compatible if the two leading parts are compatible and the two trailing parts are compat-
ible. This rule just as easily applies to additional lock modes, e.g., update or increment 
locks. Some compatibilities may be surprising at first, because exclusive and shared 
locks show as compatible. For example, XN and NS (pronounced ‘key exclusive, gap 
free’ and ‘key free, gap shared’) are compatible, which means that one transaction may 
modify non-key attributes of a key value while another transaction freezes a gap. Note 
that a ghost bit in a record header is a non-key attribute; thus, one transaction may mark 
an index entry invalid (logically deleting the index entry) while another transaction re-
quires phantom protection for the gap (open interval) between two key values. 
 

Gap → 
↓ Key 

No lock: 
_N 

Shared: 
_S 

Exclusive: 
_X 

No lock: N_ N NS NX 
Shared: S_ SN S SX 
Exclusive: X_ XN XS X 

Figure 3. Construction of lock modes. 
 

Requested → 
↓ Held S X SN NS XN NX SX XS 

S ok  ok ok     
X         

SN ok  ok ok  ok ok  
NS ok  ok ok ok   ok 
XN    ok  ok   
NX   ok  ok    
SX   ok      
XS    ok     

Figure 4. Lock compatibility. 

2.5 Summary of prior designs 
All prior solutions imply hard choices for the finest granularity of locking in a database 
index: it may be a logical row (including all its index entries – e.g., ARIES/IM) or a dis-
tinct key value with all its index entries (e.g., ARIES/KVL) or an individual index entry 
(requiring many locks if a distinct key value has many occurrences and thus index en-
tries – e.g., Microsoft SQL Server). Each prior solution suffers either from limited con-
currency or from excessive overhead, i.e., too many lock manager invocations. 
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3 Orthogonal key-value locking 
What seems needed is a design that permits covering a distinct key value and all its in-
dex entries with a single lock acquisition but also, at other times, permits high concur-
rency among updates and transactions. The proposed design combines elements of or-
thogonal key-range locking (complete separation of lock modes for key value and gap), 
of ARIES key-value locking (a single lock for a distinct key value and all its instances), 
and of ARIES/IM “index-specific locking” and key-range locking (locking individual 
index entries). Therefore, the new name is orthogonal key-value locking. 

3.1 Design goals 
As stated earlier in Section 1.2, the overall design goals are correctness, simplicity, con-
currency, and efficiency. More specifically, the goal is to combine the advantages of 
key-value locking and those of orthogonal key-range locking: 
• a single lock that covers a key value and all possible instances (e.g., the list of row 

identifiers); 
• concurrent locks on individual instances (e.g., entries in a list of row identifiers); 

and 
• independent locks for key values and the gaps between them. 
Orthogonal key-value locking satisfies the first and last of these goals and comes very 
close to satisfying the remaining one. 

3.2 Design 
The proposed new design is most easily explained in the context of a non-unique sec-
ondary index. Although representation and concurrency control are orthogonal, it might 
help to imagine that the representation stores, with each distinct key value, a list of 
bookmarks pointing to individual records in the table’s primary data structure. 
The proposed solution divides a set of index entries for a specific key value into a fixed 
number of partitions, say k partitions. Methods for lock acquisition are modified to spec-
ify not just one but multiple lock modes in a single lock manager invocation. Some de-
signs for key-range locking, specifically in Lomet’s design implemented in Microsoft 
SQL Server and in orthogonal key-range locking provide a precedent: in those designs, a 
single lock identified by a key value in an index has two modes, one for the open interval 
between two existing key values and one for the record with the given key value. Using 
two lock modes, it is possible to lock the key value without locking the gap between key 
values and vice versa, with some restrictions in Lomet’s design. 
The proposed solution extends this idea to k+1 lock modes. One of the lock modes co-
vers the gap between two distinct key values. The other k lock modes pertain to the k 
partitions in the list of index entries. A lock acquisition may request the mode “no lock” 
for any partition or for the gap to the next key value. 
Figure 5 illustrates an index record within a non-unique secondary index on an imagined 
employee table. Each index record contains a key value, a count of instances, and the set 
of instances as a sorted list of bookmarks (here, primary key values). This list is parti-
tioned into k=4 partitions, indicated by bold and italic font choices in Figure 5. In this 
example, the assignment from bookmark value to partition uses a simple “modulo 4” 
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calculation. Index entries within the same partition (and for the same index key value) 
are always locked together; index entries in different partitions can be locked inde-
pendently. 
It makes little difference whether the lock acquisition method lists 2 lock modes (in ex-
isting designs for key-range locking) or k+1 lock modes (in the proposed design), and 
whether these lock modes are listed individually (e.g., in an array) or new lock modes 
are defined as combinations of primitive lock modes (as in Figure 3). For example, or-
thogonal key-range locking defines lock modes such as “XN” or “NS” (pronounced “key 
exclusive, gap free” and ‘key free, gap shared’). They are formed from exclusive (“X”), 
shared (“S”), and no-lock (“N”) modes on key and gap. Additional primitive lock modes, 
e.g., update and increment locks, can readily be integrated into orthogonal key-range 
locking as well as orthogonal key-value locking. 
Specifically, each lock request lists k+1 modes. For only the gap between key values for 
an implementation with k=4 partitions per list, the requested mode might be NNNNS, 
i.e., no lock on any of the partitions plus a shared lock on the gap to the next key value. 
A request may lock any subset of the partitions, typically either one partition or all parti-
tions. For example, a query with an equality predicate on the non-unique index key locks 
all partitions with a single method invocation, i.e., all actual and possible row identifiers, 
by requesting a lock in mode SSSSN for k=4 partitions and no lock on the gap following 
the key value. An insertion or a deletion, on the other hand, locks only one partition for 
one key value in that index, e.g., NXNNN to lock partition 1 among k=4 partitions. In 
this way, multiple transactions may proceed concurrently with their insertions and dele-
tions for the same key value, each with its own partition locked, without conflict (occa-
sional hash conflicts are possible, however). An unusual case is a lock request for two 
partitions, e.g., while moving a row and thus modifying its bookmark. 
Individual entries within a list are assigned to specific partitions using a hash function 
applied to the unique identifier of the index entry, excluding the key value. In a non-
unique secondary index, the bookmarks (pointing to records in a primary data structure) 
serve as input into this hash function. Using locks on individual partitions, concurrent 
transactions may modify different entries at the same time, yet when a query requires the 
entire set of entries for a search key, it can lock it in a single lock manager call. 
For k=1, the new design is very similar to the earlier design for orthogonal key-range 
locking. Recommended values are k=1 for unique indexes (but also see Section 3.4 be-
low) and k=3 to k=100 for non-unique indexes. The optimal value of k probably depends 
on the desired degree of concurrency, e.g., the number of hardware and software threads. 
 

Gender Count List of EmpNo values 
‘male’ 89 2, 3, 5, 8, 10, 12, 13, 14, 19, 21, … 

Figure 5. A partitioned list of bookmarks. 

3.3 Lock manager implementation 
Lock requests with k+1 lock modes impose a little extra complexity on the lock manag-
er. Specifically, each request for a lock on a key value in a b-tree index must be tested in 
each of the k+1 components. On the other hand, in most implementations the costs of 
hash table lookup and of latching dominates the cost of manipulating locks. 
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Locks are identified (e.g., in the lock manager’s hash table) by the index identifier and a 
distinct key value, e.g., Gender in Figure 5. This is equal to ARIES/KVL and similar to 
Microsoft’s key-range locking and orthogonal key-range locking. Also equal is the rule 
that a lock request is granted if the request is compatible with all locks granted already. 
The definition of lock compatibility follows the construction of Figure 4 from Figure 3: 
lock modes are compatible if they are compatible component by component. For exam-
ple, multiple exclusive locks on the same key value but on different components or parti-
tions are perfectly compatible. Finally, if the lock manager speeds up testing for compat-
ibility by maintaining a “cumulative lock mode” summarizing all granted locks (for a 
specific index and key value), then this mode is computed and maintained component by 
component. 
For small values of k, e.g., k=3 or even k=1 (e.g., for unique indexes), checking each 
component is efficient. For large values of k, e.g., k=31 or k=100, and in particular if 
equality queries frequently lock all partitions at once, it may be more efficient to reserve 
one component for the entire key value, i.e., all partitions. In a sense, this change re-
introduces a lock on the distinct key value, with aspects of both ARIES/KVL (locking all 
actual and possible instances of a key value) and of orthogonal key-range locking (sepa-
rate lock modes for key value and gap). 
With the additional lock on an entire distinct key value, the number of components in the 
lock increases from k+1 to 1+k+1 (=k+2) lock modes for each key value in the index. 
This additional lock component on the entire key value permits absolute lock modes 
(e.g., S, X) as well as intention lock modes (e.g., IS, IX) and mixed modes (e.g., SIX). A 
lock request for an individual partition must include an intention lock on the entire key 
value. A lock request for all partitions at once needs to lock merely the entire key value 
in an absolute mode, with no locks on individual partitions. A mixed lock mode com-
bines these two aspects: an SIX lock on a key value combines an S lock on all possible 
instances of that key value and the right to acquire X locks on individual partitions (of 
bookmarks associated with the key value). 
Figure 6 illustrates both the lock modes on all partitions of a distinct key value and on 
gaps between such key values. Its left-most column lists the set of possible lock modes 
for the entire key value. The remainder of Figure 6 suggests lock modes formed by pair-
ing the entire key value and the gap to the next key value. With this set of lock modes, 
the number of components in a lock request shrinks back from k+2 to k+1. More im-
portantly, when a transaction needs to lock an entire key value, e.g., for a query with an 
equality predicate, lock acquisition and release are as fast as in traditional lock manag-
ers. 
The top half of Figure 6 is equal to Figure 3; the bottom half adds intention locks for the 
entire key value. A lock compatibility matrix similar to Figure 4 is easily derived. In 
fact, derivation of these lock modes and their compatibilities is so straightforward that it 
is almost faster to write a program than to type them explicitly, which also simplifies 
adding further basic lock modes such as update and increment locks. 
Another obvious optimization pertains to unique indexes locked with k=1, i.e., a single 
partition. In this case, it is sufficient to rely entirely on the top half of Figure 6, rendering 
the (one and only) per-partition lock moot. 
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Gap → 
↓ Entire key value 

No lock 
_N 

Shared 
_S 

Exclusive 
_X 

No lock: N_ N NS NX 
Shared: S_ SN S SX 
Exclusive: X_ XN XS X 
Intent to share: IS_ ISN ISS ISX 
Intent to exclude: IX_ IXN IXS IXX 
Shared with intent 
to exclude: SIX_ 

SIXN SIXS SIXX 

Figure 6. Construction of lock modes. 

3.4 Unique secondary indexes 
For unique indexes, the obvious default is to use a single partition (k=1) to match the 
behavior of orthogonal key-range locking. There is, however, another alternative specifi-
cally for multi-column unique keys: lock some prefix of the key like the key in a non-
unique index, and lock the remaining columns (starting with the suffix of the unique 
key) like the bookmarks in the design for non-unique indexes. 
Perhaps an example serves best to clarify this alternative. Imagine two entity types and 
their tables, called “student” and “course,” plus a many-to-many relationship with its 
own table, called “enrollment.” An index on enrollment may be unique on the combina-
tion of student identifier and course number, which suggests orthogonal key-value lock-
ing with a single partition (k=1). 
The alternative design locks index entries as in a non-unique index on the leading field, 
say student identifier. In that case, queries may lock the entire enrollment information of 
one student with a single lock (locking all partitions in the student’s list of course num-
bers); yet updates may lock subsets of course numbers (by locking only a single partition 
within a list of course numbers). With an appropriate number of partitions, the concur-
rency among updates is practically the same as with locks on individual course numbers. 
Note that this pattern of queries is quite typical for many-to-many relationships: a pre-
cise retrieval in one of the entity types (e.g., a specific student), an index that facilitates 
efficient navigation to the other entity type (e.g., on enrollment, with student identifier as 
leading key), and retrieval of all instances related to the initial instance. The opposite 
example would be similarly typical – listing all students for a single course using an in-
dex on course number of enrollment – and must be well supported in a database system, 
its indexes, repertoire of query execution plans, etc. B-tree indexes cluster relevant index 
entries due to their sort order; the proposed use of key-value locking supports these que-
ries with the minimal number of locks and of lock requests. 

3.5 Summary of orthogonal key-value locking 
The proposed solution combines all the advantages of locking a distinct key value and all 
its index entries in a single lock manager invocation, i.e., lock overhead, and most of the 
advantages of locking individual index entries, i.e., high concurrency. Moreover, the 
proposed solution opens new opportunities for concurrency control in unique secondary 
indexes as well as primary indexes. 
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4 Case studies 
In order to clarify the specific behaviors of the various locking schemes, this section 
illustrates the required locks and the enabled concurrency of each design for all principal 
types of index accesses. These comparisons are qualitative in nature but nonetheless 
serve to highlight the differences among the schemes. Differences in performance and 
scalability depend on the workload; an experimental comparison follows in Section 5. 
The comparisons rely on a specific (toy) example table with employee information. This 
table has a primary index on its primary key (unique, not null) and a non-unique second-
ary index on one of the non-unique columns. 
Figure 7 shows some index records in the primary index. The figure shows the rows 
sorted and the reader should imagine them in a b-tree data structure. Note the skipped 
values in the sequence of EmpNo values and the duplicate values in the column First-
Name. This toy example has only two duplicates but indexes on real data may have 
thousands. Figure 8 illustrates index records in a non-unique secondary index on First-
Name. This index format pairs each distinct key value with a list of bookmarks. Unique 
search keys in the primary index serve as bookmarks; they are also the table’s primary 
key here. 
 

EmpNo FirstName PostalCode Phone 
1 Gary 10032 1122 
3 Joe 46045 9999 
5 Larry 53704 5347 
6 Joe 37745 5432 
 9 Terry 60061 8642 

Figure 7. An example database table. 
 

FirstName Count EmpNos 
Gary 1 1 
Joe 2 3, 6 
Larry 1 5 
Terry 1 9 

Figure 8. An example non-unique secondary index. 

4.1 Empty queries – phantom protection 
The first comparison focuses on searches for non-existing key values. Assuming a serial-
izable transaction, a lock is required for phantom protection until end-of-transaction. In 
other words, the first comparison focuses on techniques that lock the absence of key val-
ues. The example query is “Select... where FirstName = ‘Hank’ ”, which falls into the 
gap between key values Gary and Joe. Recall that we excluded in Section 2 any locking 
design like Tandem’s in which an unsuccessful query may introduce a value into the 
database or the lock manager. 
ARIES/KVL cannot lock the key value Hank so it locks the next higher key value, Joe. 
This locks all occurrences of the distinct key value without regard to EmpNo values. 
Thus, no other transaction can insert a new row with FirstName Hank but in addition, no 
other transaction can modify, insert, or delete any row with FirstName Joe. 
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ARIES/IM also locks the next higher key value, i.e., it locks the first occurrence of Joe 
and thus the row with EmpNo 3. A single lock covers the row in the table, i.e., the index 
entry in the primary index, the index entry in the secondary index (and any further sec-
ondary indexes), plus (in each index) the gap between those index entries and the next 
lower key value present in the index. While this lock is in place, no other transaction can 
insert a new row with FirstName Hank. In addition, no other transaction can insert new 
index entries (Gary, 7) or (Joe, 2), for example, because these index entries also belong 
into the gap locked for phantom protection, whereas a new index entry (Joe, 4) could 
proceed. In fact, due to the lock’s scope in the primary index, no other transaction can 
insert any row with EmpNo 2. 
Key-range locking in Microsoft SQL Server locks the first index entry following the 
unsuccessful search, i.e., the index entry (Joe, 3). The search in the secondary index does 
not acquire any locks in the primary index. Insertion of a new row with FirstName Joe is 
possible if the EmpNo is larger than 3, e.g., 7. Insertion of a new employee (Joe, 2) or 
(Gary, 7) is not possible. 
Orthogonal key-range locking locks the key preceding a gap, i.e., the index entry (Gary, 
1) in NS mode (pronounced ‘key free, gap shared’). Insertion of new rows with First-
Name Gary are prevented if the EmpNo value exceeds 1. On the other hand, non-key 
fields in the index entry (Gary, 1) remain unlocked and another transaction may modify 
those, because a lock in NS mode holds no lock on the key value itself, only on the gap 
(open interval) between index entries. The restriction to non-key fields is less severe than 
it may seem: recall from Section 2.4 that an index entry’s ghost bit is a non-key field, 
i.e., deletion and insertion by toggling the ghost bit are possible. The lock matrix of SQL 
Server lacks a RangeS_N mode that would be equivalent to the NS mode in orthogonal 
key-range locking. 
Finally, orthogonal key-value locking locks the preceding distinct key value, Gary, in a 
mode that protects the gap (open interval) between Gary and Joe but imposes no re-
strictions on those key values or their lists of EmpNo values. For example, another trans-
action may insert a new row with FirstName Gary or Joe and with any EmpNo value. 
Removal of rows with FirstName Joe has no restrictions; deletion of rows with First-
Name Gary and removal of their index entries requires that the value Gary remain in the 
index, at least as a ghost record, until the need for phantom protection ends and the lock 
on key value Gary is released. 
In summary, while all techniques require only a single lock manager invocation, orthog-
onal key-value locking provides phantom protection with the least restrictive lock scope. 

4.2 Successful equality queries 
The second comparison focuses on successful index search for a single key value. This 
case occurs both in selection queries and in index nested loops joins. The example query 
predicate is “…where FirstName = ‘Joe’ ”, chosen to focus on a key value with multiple 
instances in the indexed column. While the example shows only two instances, real cases 
may have thousands. Serializability requires that other transactions must not add or re-
move instances satisfying this search predicate. 
ARIES/KVL requires only one lock for all instances of FirstName Joe. This lock per-
tains to the secondary index only. Within the secondary index, the lock covers the key 
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value and the gap to the next lower key value, i.e., FirstName Gary. Thus, this lock also 
prevents insertion of a key value other than Joe, e.g., FirstName Hank. 
ARIES/IM locks three rows in the table including both rows with FirstName Joe (rows 3 
and 6) and the next higher key value, i.e., row 5 with FirstName Larry. The last lock is 
required to prevent other transactions from inserting additional instances, e.g., (Joe, 7). 
These locks include the gap to the next lower key in each index, i.e., both the primary 
index and the secondary index. Thus, they prevent insertion of new rows with FirstName 
Joe and EmpNo 2 or 4 as well as rows with FirstName Ken and rows with FirstName 
Larry and EmpNo smaller than 5. 
SQL Server locks each instance of the desired key value with its unique index entry, i.e., 
(Joe, 3) and (Joe, 6), plus the next higher actual key value, i.e., (Larry, 5). The last lock 
prevents additional entries with FirstName Joe and EmpNo values greater than 6, but it 
also prevents insertion of additional entries with FirstName Larry and EmpNo smaller 
than 5 as well as key values between Joe and Larry, e.g., Ken. 
Orthogonal key-range locking is similar to SQL Server locking except it locks the next 
lower key value from Joe instead of the next higher key value, i.e., Gary instead of Lar-
ry, and it leaves the additional record itself unlocked. A lock in NS mode (pronounced 
‘key free, gap shared’) on key value (Gary, 1) leaves the existing index entry unlocked 
but it prevents insertion of new index entries with FirstName Gary and EmpNo values 
higher than 1, with FirstName values between Gary and Joe, e.g., Hank, and with First-
Name Joe and EmpNo value smaller than 3. Only the last group is truly required to pro-
tect the result of the example query. This problem is inherent in all key-range locking 
schemes. 
Finally, orthogonal key-value locking acquires a single lock covering all actual and pos-
sible index entries with FirstName Joe. Both adjacent key values remain unlocked, i.e., 
Gary and Larry. Even the gaps below and above FirstName Joe remain unlocked, i.e., 
other transaction are free to insert new index entries with FirstName Hank or Ken. 
In summary, among all locking schemes for b-tree indexes, orthogonal key-value lock-
ing allows repeatable successful equality queries with the fewest locks and the best pre-
cision. 

4.3 Other cases 
A technical report compares the other principal access patterns in similar detail; the fol-
lowing is merely a summary. 
In a range query, orthogonal key-value locking can match both open and closed intervals 
more precisely than all other techniques, in addition to requiring fewer locks than key-
range locking and ARIES/IM in cases of duplicate key values. 
In a non-key update of a single index entry, orthogonal key-range locking is the most 
precise method, with orthogonal key-value locking equal assuming an appropriate num-
ber of partitions. 
In a single-row deletion, toggling the ghost bit in a record header is a non-key update. 
Thus, orthogonal key-range locking and orthogonal key-value locking are superior to the 
other techniques. A later system transaction performs ghost removal with latches only. 
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In a single-row insertion, a system transaction may first create a ghost record using 
latches but no locks. In the subsequent non-key update including toggling the record’s 
ghost bit, orthogonal key-range locking and orthogonal key-value locking are superior to 
all earlier techniques. 
The preceding cases cover all principal types of index access and compare their locking 
requirements. In all comparisons, orthogonal key-value locking fares very well. In que-
ries, it is better than all prior techniques, including orthogonal key-range locking. In up-
dates including deletion and insertion via ghost status, orthogonal key-range locking is 
best. Orthogonal key-value locking equals orthogonal key-range locking except in the 
case of hash collisions due to an insufficient number of partitions. 

5 Experimental evaluation 
In this section, we evaluate efficiency and concurrency of orthogonal key-value locking 
in order to assess the following benefits compared to prior locking techniques: 
• The cost of taking orthogonal key-value locks is as low as that of taking coarse 

grained locks (Section 5.1). 
• The concurrency of orthogonal key-value locks is as high as the concurrency with 

state-of-the-art prior lock modes (Section 0). 
• Orthogonal key-value locking provides both of the above benefits at the same time, 

which no prior locking techniques could do (Section 5.3). 
We implemented orthogonal key-value locking in a modified version of the Shore-MT 
[JPH 09] code base. In addition to orthogonal key-value locking, we applied several 
modern optimizations for many-core processors. Reducing other efforts and costs clari-
fies the differences in locking strategies and thus makes our prototype a more appropri-
ate test bed to evaluate orthogonal key-value locking. Put differently, a system without 
efficient indexing, logging, etc. performs poorly no matter the locking modes and 
scopes. At the same time, these other optimizations amplify the need for an optimal lock-
ing technique. We found the following optimizations highly effective: 
• Flush-pipelines and Consolidation Arrays [JPS 10] speed up logging. 
• Read-after-write lock management [JHF 13] reduces overheads in the lock manager. 
• Foster b-trees [GKK 12] make b-tree operations and latching more efficient and 

ensure that every node in the b-tree has always a single incoming pointer. 
• Pointer swizzling [GVK 15] speeds up b-tree traversals within the buffer pool. 
For the first and second optimizations, we thank the inventors for their generous guid-
ance in applying their techniques in our code base. Our measurements confirm their ob-
servations, reproducing significant speed-ups in a different code base. 
We emphasize that both orthogonal key-value locking and read-after-write lock man-
agement are modular improvements in a database code base. We first modified the exist-
ing lock modes to orthogonal key-value locking and then modified the existing lock 
manager in Shore-MT to read-after-write lock management.  
In all experiments, we compiled our programs with gcc 4.8.2 with -O2 optimization. Our 
machine, an HP Z820 with 128 GB of RAM, runs Fedora 20 x86-64 on two Intel Xeon 
CPUs model E5-2687W v2 with 8 cores at 3.4 GHz. 
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To focus our measurements on efficiency and concurrency of the lock manager, we run 
all experiments with data sets that fit within the buffer pool. The buffer pool is pre-
loaded with the entire data set (hot-start) before we start measuring the throughput. We 
also we use a RAMDisk (/dev/shm) as the logging device. 
All experiments use TPC-C tables with 10 warehouses as well as workloads similar to 
queries within TPC-C transactions. The transaction isolation level is serializable in all 
experiments. Error bars in the figures show the 95% confidence intervals. 

5.1 Locking overhead 
The first experiment compares the overhead of taking locks using a cursor query that 
frequently appears in TPC-C. In short, the table schema and the query is described as 
follows. 

CREATE TABLE CUSTOMER ( 
INTEGER WID, -- Warehouse ID 
INTEGER DID, -- District ID 
INTEGER CID, -- Customer ID 
STRING LAST_NAME, …) 
OPEN CURSOR 
SELECT … FROM CUSTOMER WHERE WID=… AND DID=… 
ORDER BY LASTNAME 
CLOSE CURSOR 

To process this query, virtually all TPC-C implementations build a secondary index on 
CUSTOMER’s WID, DID, and name [TPC]. We evaluate the performance of cursor 
accesses to the secondary index. We compare orthogonal key-value locking that uses the 
non-unique key prefix (WID, DID) as its lock key to traditional granular locking that 
takes a lock for each index entry, i.e., ARIES/IM [ML 92] and key-range locking [L 93]. 
 

 
Figure 9. Lock counts and retrieval speed-up. 

 
Figure 9 shows the speed-up achieved by orthogonal key-value locking compared to 
traditional granular locking in two settings. Note that the diagram shows system 
throughput, not just the effort spent on concurrency control. 
In the first setting, we specify first-name in addition to WID and DID, touching only 3 
keys per cursor access. In this case, the dominating cost is the index lookup to identify 
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the page that contains the records. Thus, orthogonal key-value locking reduces lock 
manager calls by 3× but results in only 35% speed-up. 
In the second setting, we do not specify first-name, thus hitting 3,000 keys per cursor 
access. In this case, the dominating costs are (i) locking overhead and (ii) the cost to read 
each record. As orthogonal key-value locking requires only one lock request in this case, 
i.e., one lock covers 3,000 index entries, it effectively eliminates the first cost, resulting 
in 4.8× better performance. 
This experiment verifies the hypothesis that orthogonal key-value locking achieves the 
low overhead previously achieved only by coarse-grained locking, e.g., locking entire 
indexes or at least pages with 100s or 1,000s of index entries. 

5.2 Concurrency 
The experiment above showed that the overhead of orthogonal key-value locking is as 
low as coarse grained locking. However, traditional coarse-grained locking is known for 
its low concurrency. The second experiment evaluates the concurrency enabled by or-
thogonal key-value locking using a write-heavy workload. 
We again use the TPC-C Customer table, but this time each transaction updates the table, 
specifying the primary key (WID, DID, CID). Orthogonal key-value locking uses the 
prefix (WID, DID) as lock identifier and CID as uniquifier. We compare orthogonal key-
value locking with traditional key-value locking on (WID, DID). 
 

 
Figure 10. Transaction throughput with no skew in the requests. 

 
Figure 10 shows the average transaction throughput, using uniformly random values for 
WID and DID in the retrieval requests. We varied the number of partitions in orthogonal 
key-value locking from k=1 (equivalent to traditional coarse-grained locking) to 
k=4,093. The values for k are chosen to be efficient in terms of CPU cache lines so that 
k+2 lock modes fit in 64 bytes or a multiply of 64 bytes. 
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As there is little skew, all configurations scale well with the number of concurrent 
threads until the system becomes over-subscribed; background threads conflict with the 
worker threads, e.g., logging and garbage collection in the lock manager. 
One key observation is the high overhead of taking locks with extremely large values for 
k, e.g., k=4,093. Very large values for k cause many cache misses in the lock manager, 
making lock acquisition and compatibility tests expensive. 
Figure 11 shows the result of the same experiment with skewed values of WID and DID 
in the updates; 80% of the transactions choose the first WID and 80% choose the first 
DID. Thus, concurrent transactions attempt to access the same index entries. 
In this case, traditional key-value locking as well as orthogonal key-value locking with 
extremely few partitions (e.g., k=1) suffer from logical lock contention, hitting a perfor-
mance plateau with only 3 threads. With larger k, orthogonal key-value locking is more 
concurrent and enables higher transaction throughput, except for an extremely large val-
ue (k=4,093), which causes cache-misses and physical contention in the lock queue. 
This experiment verifies that, when there are many threads that are concurrently access-
ing the same data within the database, orthogonal key-value locking with a reasonably 
number of partitions achieves high concurrency because the lock compatibility of or-
thogonal key-value locking with many partitions is effectively equivalent to a very fine 
granularity of locking. 
 

 
Figure 11. Transaction throughput with skew in the requests. 

5.3 Mixed workloads 
The experiments above show cases in which orthogonal key-value locking is as good as 
traditional locking modes, either coarse-grained or fine-grained. In this experiment, we 
show a more realistic case; a read-write mixed workload. In such a workload, both low 
overhead and high concurrency are required at the same time. 
The workload consists of three transaction types; SELECT, INSERT, and DELETE. The 
mixture ratio is 40% SELECT, 40% INSERT, and 20% DELETE. Each transaction 
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chooses WID with skew (90% of them chooses the first WID). All transactions use the 
STOCK table in TPC-C as shown below: 

CREATE TABLE STOCK( 
INTEGER WID, -- Warehouse ID 
INTEGER IID, -- Item ID 
…) 

A transaction uniformly picks an item id and selects, inserts, or deletes tuples. STOCK 
table may or may not have the particular pair of WID and IID. Thus, SELECT and DE-
LETE might hit a non-existing key. We compare four different lock modes to handle 
these cases: 
• ARIES/KVL [M 90] locks unique values of the user-defined index key including a 

neighboring gap. Our implementation uses a lock on (WID) in this experiment. 
• Key-range locking (KRL) [L 93] somewhat separates lock modes for unique index 

entries and gaps between their key values. As it lacks some lock modes (e.g., ‘key 
free, gap shared’), our implementation takes a lock in a more conservative lock 
mode (e.g., ‘key shared, gap shared’, known as RangeS_S) in such cases. 

• Orthogonal key-range locking (OKRL) [G 07, G 10, KGK 12] uses orthogonal lock 
modes for unique index entries and gaps between them. 

• Orthogonal key-value locking (OKVL) uses (WID) as the lock key with (IID) as 
uniquifier. Orthogonal key-value locking acquires only one lock per transaction, but 
the lock contains partition modes for the accessed IIDs. 

The next experiment uses 14 threads and 253 partitions in orthogonal key-value locking. 
 

 
Figure 12. Locking and throughput of read-write transactions. 

 
Figure 12 shows that with a highly skewed workload, ARIES/KVL (coarse-grained lock) 
fails to enable concurrency among updates. Its degree of parallelism is very low here, 
even if other experiments (Figure 9) show that is very efficient in single-threaded execu-
tion because it takes only one lock per transaction. On the other hand, key-range locking 
and orthogonal key-range locking enable more concurrent transactions but acquire many 
locks, which makes these techniques suffer from lock waits and even deadlocks. 
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In contrast, orthogonal key-value locking achieves both low overhead and high concur-
rency at the same time. It takes only one lock per transaction yet allows transactions to 
run concurrently, for 1.7-2.1× better transaction throughput. Thus, this experiment veri-
fies our hypothesis that only orthogonal key-value locking combines the benefit of a 
coarse and a fine granularity of locking in b-tree indexes. 

6 Conclusions 
In summary, the new technique called orthogonal key-value locking combines design 
elements as well as advantages of (i) key-value locking in ARIES (a single lock for an 
equality query), of (ii) key-range locking (locking individual index entries for high con-
currency), and of (iii) orthogonal key-range locking (independent lock modes for gaps 
between key values). The principal new techniques are (i) partitioning (only for the pur-
pose of locking) each set of bookmarks within a non-unique secondary index and (ii) 
specifying individual lock modes for each partition and for the gap (open interval) be-
tween distinct key values. 
A detailed case study compares the locking methods for ordered indexes (in particular b-
trees) and demonstrates that orthogonal key-value locking is superior to all prior tech-
niques for queries. For updates, it effectively equals the best prior method, which is or-
thogonal key-range locking. It performs sub-optimally only if ghost records must not be 
used for some reason or if the number of partitions is chosen so small that hash collisions 
within a list of bookmarks lead to false sharing and thus to lock conflicts. 
Our prototype validates the anticipated simplicity of implementation in any database 
management system that already uses similar, traditional techniques, namely key-range 
locking or key-value locking. Like orthogonal key-range locking, and unlike prior lock 
techniques for b-tree indexes, orthogonal key-value locking permits automatic derivation 
of combined lock modes (e.g., for entire key value and gap) and automatic derivation of 
the lock compatibility matrix. It seems possible to automate even the derivation of test 
cases including expected test outcomes. 
An experimental evaluation validates the insights gained from the case study: in situa-
tions with high contention, orthogonal key-value locking combines the principal ad-
vantages of key-value locking and (orthogonal) key-range locking. A read-only experi-
ment shows retrieval throughput increase by 4.8 times and a mixed read-write workload 
shows a transaction throughput 1.7-2.1 times better than the prior techniques. Thus, we 
expect to find the new techniques in new implementations of b-trees and hope that they 
will replace the locking schemes in existing implementations. We hope that this study 
will affect design and implementation of databases, key-value stores, and (modern, b-
tree-based) file systems alike. 
Acknowledgments: Wey Guy, Ryan Johnson, Ilia Petrov, and the reviewers gave excel-
lent feedback on earlier versions of this paper. 
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